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We have numerically and theoretically investigated a simple model for two-component spreading phenom-
ena in two different growth geometries~i.e., spreading confined in a half space and spreading in a free space!.
The criticality of the domain substructures unexpectedly depends on the considered geometry. This is under-
stood by simple arguments of domain-wall particle diffusion and annihilation. We derive a relationship be-
tween the critical exponentsx anda for domain-wall spatial distributions in different geometries. The latter
relationship is numerically verified in two, three, and four dimensions.@S1063-651X~96!10209-9#

PACS number~s!: 05.40.1j, 82.20.Mj, 61.43.Hv, 68.35.Rh

Spreading and invading phenomena are common nonequi-
librium processes in nature as liquid invasion in porous me-
dium, grain coalescence in alloys, fracture propagation in
solids, damage spreading in electrical or neural networks,
and virus propagation. For spreading processes driven by
cooperative or nonlinear evolution rules, the systems develop
patterns that often reach a high level of complexity@1#.

The most simple spreading model is the Eden model,
which describes the aggregation of identical particles. The
model was imagined in order to mimic the growth of bacteria
cell colonies @2# and was rapidly generalized to simulate
other one-component spreading phenomena@3,4#. In version
C of the Eden model,@4# a single step of the growth consists
of randomly selecting a particle on the surface of a seed, a
cluster thereafter, and at random filling one of its empty
neighbors by a new particle. Different geometries have been
studied: the seed was chosen to be, e.g., an occupied line or
a single occupied site. In all cases, the generated clusters are
found to fill the entire available space showingtrivial non-
fractal structures.

However, in natural systems, the growing entities usually
present additional degrees of freedom. Examples of multi-
component systems are alloys, fluids, magnets, ceramics,
polymers, bacterian cells, and viruses. The pattern formation
in multicomponent systems is then of great interest@5#. The
aim of this paper is to investigate the pattern formation of
multicomponent spreadings in different geometries. We will
restrict our discussion to two-component cases, which is ob-
viously the first major step in elaborating a general frame-
work for multicomponent growths.

Recently, Saito and Mu¨ller-Krumbhaar @6# generalized
the Eden model on a square lattice in considering the com-
petition of two different speciesA andB. Starting ona seed
line of antiferromagneticlike configurationABAB. . . , the
two-dimensional growth takes place by selecting randomly,
at each growth step, some particleA ~or B) on a cluster
surface. The (A or B) selected particle gives an offspringof
the same specieson a randomly chosen empty neighboring
site of the selected particle site. The macroscopic growth
takes place in a direction perpendicular to the seed line. Pe-

riodic boundary conditions are used in this confined half
space. Note that this basic model excludes the nucleation of
a B species in a neighborhood consisting only ofA species
and vice versa. The Saito–Mu¨ller-Krumbhaar~SMK! growth
rule leads to the formation of domains that compete for
growth. Some domains are slowly trapped by others that coa-
lesce. The process is far from equilibrium and history depen-
dent such that the internal pattern reflects the growth itself.

Due to the coalescence of domains, the competition be-
tween domains leads asymptotically to one domain winning
the competition and covering the whole cluster surface as
illustrated in Fig. 1. Ford5111, the numbern(h) of A or
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FIG. 1. Internal structure of a cluster grown with the SMK rule
~in a half space of sizeL564). Each color represents a species.
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B domain walls at a heighth scales asn(h);h2x, with
x5 2

3 for L→1` @6# such that the internal pattern of do-
mains presents power-law correlations. The internal pattern
is then expected to be scale invariant and the size distribution
of A andB domains is expected to be a simple power law. In
so doing, the internal pattern is said to becritical @6#. This
emergence of criticality for competing species seems to be
natural and universal.

We numerically investigated the SMK model in 211 and
311 dimensions. Figure 2 presents the decay ofn(h) for
d5211 for seed sizes up to 60360. A power-lawdecay of
n(h) was found for large system size, expressing the pres-
ence of strong finite-size effects in this geometry. The expo-
nent x was found to bex50.3560.03, close to1

3. For
d5311, seed sizes up to 40340340 have been simulated
and the exponentx is numerically estimated to be
x50.2260.06, close to14. The values of the exponentx are
listed in Table I.

Now let us consider the growth in a different geometry,
i.e., on ad-dimensional hypercubic lattice starting from a
central site. Initially, the minimal double seed configuration
AB is considered on the central sites of the lattice. The
growth consists in selecting at random one occupied site on
the cluster surface and in gluing a new particle of the same
state on one of its empty neighboring sites. This selection-
gluing process is repeated a desired number of times. The
process is equivalent to the SMK model, but the geometry is
now slightly different: the macroscopic growth is radial and
the clusters are rounded.

Figure 3 presents the substructure of a cluster after

N510 000 particles have been glued: each color represents a
particle species. Contrary to the confined half space of the
SMK model, the competition does not lead asymptotically to
the growth of a single domain, but the number of domains
seems to be conserved during the cluster growth. This is
verified through measuring the numbern(r ) of domain walls
as a function of the distancer from the central lattice site.
Clusters of mass up to 223, 221, and 220 particles were simu-
lated ford52, 3, and 4, respectively. We found numerically
thatn(r ) scales as a power lawn(r );r a. The exponenta is
thus the counterpart of the exponentx, but in the radial
growth case.

The exponenta was found to be zero on the square lattice
(d52), as shown in Fig. 4. Moreover,a is strictly positive
in three (a51.3360.01) and four dimensions (a
52.4860.04). This is also illustrated in Fig. 4. One should
note that the central seed growth model gives more accurate
exponent values than in the restricted growth case since
finite-size effects are less important in the former geometry.

FIG. 2. Log-log plot of the distributionn(h) of the domain
walls in ad5211 half space. Various system sizes are illustrated:
10310, 40340, and 60360. FIG. 3. Two-component cluster grown on the square lattice.

Each color represents a species. Note the conservation of the num-
ber of domains during the growth.

FIG. 4. log-log plot of the radial distributionn(r ) of domain
walls in, respectively,d52, 3, and 4.

TABLE I. Numerical values of the critical exponentsx anda
estimated on variousd-dimensional hypercubic lattices. The last
column gives an estimation of the exponenta through the scaling
relationship of Eq.~3!.

d x a (d22)(11x)

2 0.6760.01 0 0
3 0.3560.03 1.3360.01 1.3560.03
4 0.2260.06 2.4860.04 2.4460.12
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Because new domains cannot spontaneously nucleate on the
cluster surface, a positive or zero value ofa means that the
number of domains is strictly constant during the cluster
growth. However, the positive value ofa in three and four
dimensions means that the domain walls are fractal with a
fractal dimensiondf5a11.

Strictly speaking, the growth of domains in this open
space geometry isnoncritical since the size of growth events
~i.e., domain sizes! is not distributed as a power law. How-
ever, the domain walls are fractal-like objects, resulting from
the motion of the domain walls. It seems that these basic
two-component spreading phenomena are not universal in
the strict physical sense and depend on the considered space
availability. This unexpected nonuniversality was also ob-
served for the roughness exponent of interfaces between
Eden clusters@7# in various confined geometries.

One can explain the effect of the geometry on the criti-
cality by describing the formation of internal structures. One
may, e.g., assimilate the growth of the diffusion of ‘‘domain-
wall particles’’ on the cluster surface. When two domain-
wall particles meet, they annihilate. The latter event corre-
sponds to the coalescence of two domains. For the SMK
model, one can write down a generalized diffusion-
annihilation equation@6#

dr

dh
;2r111/x, ~1!

where the density of wall particles is simply
r(h)5n(h)/L. Integrating this equation, one finds easily the
power lawn(h);h2x, in agreement with numerical results
for theL→1` limit.

However, one should remark that for the central seed
case, the diffusion-annihilation equation should take into ac-
count the fact that the average interparticle distance increases
with a positive variation ofr . Because of this surface dila-
tion, the decreasing rate of the density of wall particlesr is
proportional tod(1/S)/dr, whereS is the cluster surface
S;r d21. This argument implies that

dr

dr
;2

r111/x

r d
, ~2!

where r(r )5n(r )/r d21. Assuming that the number of
domain-wall particles scales asn(r );r a, Eq. ~2! leads to a
relationship

a5~d22!~11x! ~3!

between both exponentsa andx and the space dimension-
ality d. As shown in Table I, the relationship~3! is in very
good agreement with the numerical estimations of both ex-
ponents. One should note thatx>0 since the number of
domains cannot increase. This imposes thata>d22.

It should be pointed out that the decay of the number of
domains in the striplike geometry can be related to the sur-
face fluctuations through the dynamical exponentz @8#. For
the Eden growth, the surface fluctuations are governed by the
Kardar-Parisi-Zhang~KPZ! equation@9#. Earlier studies in a
striplike geometry@8# have shown that the numberN(h) of
domains goes as

N~h!;h2~d21!/z ~4!

in d-bulk dimension. Ford52, the number of domains at
heighth is equivalent to the number of domain wall particles
n(h) such thatx51/z. Sincez5 3

2 for d52 @9#, this gives
x5 2

3, in agreement with our findings. Thus our findings are
consistent with the usual exponents for surface fluctuations.

However, ford.2, the Eden model does not reach the
asymptotic regime of the KPZ equation for accessible length
and time scales@10#. For d.2, we found herein that
x'1/d.

We conclude from these results that the geometry of a
two-component propagation~round or confined in a half
space! influences the binary species critical growth behavior.
The criticality of two-component spreading seems to be not
universal because the geometry affects the criticality. How-
ever, a scaling relationship is found between the exponents
x anda describing the domain-wall distributions in the dif-
ferent geometries and the space dimensiond. This work en-
hances the interest of the study of multicomponent spreading
phenomena@5# and opens alternative perspectives. Further
developments concern, e.g., the case of more than two kinds
of particles.
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