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Two-component spreading phenomena: Why the geometry makes the criticality
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We have numerically and theoretically investigated a simple model for two-component spreading phenom-
ena in two different growth geometrigise., spreading confined in a half space and spreading in a free)space
The criticality of the domain substructures unexpectedly depends on the considered geometry. This is under-
stood by simple arguments of domain-wall particle diffusion and annihilation. We derive a relationship be-
tween the critical exponentg and « for domain-wall spatial distributions in different geometries. The latter
relationship is numerically verified in two, three, and four dimensi¢§4063-651X96)10209-9

PACS numbsg(s): 05.40:+j, 82.20.Mj, 61.43.Hv, 68.35.Rh

Spreading and invading phenomena are common nonequiiodic boundary conditions are used in this confined half
librium processes in nature as liquid invasion in porous mespace. Note that this basic model excludes the nucleation of
dium, grain coalescence in alloys, fracture propagation it B species in a neighborhood consisting onlyfoSpecies
solids, damage spreading in electrical or neural networksand vice versa. The Saito—Ner-KrumbhaanSMK) growth
and virus propagation. For spreading processes driven byle leads to the formation of domains that compete for
cooperative or nonlinear evolution rules, the systems develogrowth. Some domains are slowly trapped by others that coa-
patterns that often reach a high level of complexiy. lesce. The process is far from equilibrium and history depen-

The most simple spreading model is the Eden modeldent such that the internal pattern reflects the growth itself.
which describes the aggregation of identical particles. The Due to the coalescence of domains, the competition be-
model was imagined in order to mimic the growth of bacteriatween domains leads asymptotically to one domain winning
cell colonies[2] and was rapidly generalized to simulate the competition and covering the whole cluster surface as
other one-component spreading phenon{@y. In version illustrated in Fig. 1. Fod=1+1, the numben(h) of A or
C of the Eden model4] a single step of the growth consists
of randomly selecting a particle on the surface of a seed, a
cluster thereafter, and at random filling one of its empty .
neighbors by a new particle. Different geometries have been
studied: the seed was chosen to be, e.g., an occupied line or
a single occupied site. In all cases, the generated clusters are
found to fill the entire available space showitrtyial non-
fractal structures.

However, in natural systems, the growing entities usually
present additional degrees of freedom. Examples of multi-
component systems are alloys, fluids, magnets, ceramics,
polymers, bacterian cells, and viruses. The pattern formation
in multicomponent systems is then of great intef&$t The
aim of this paper is to investigate the pattern formation of
multicomponent spreadings in different geometries. We will
restrict our discussion to two-component cases, which is ob-
viously the first major step in elaborating a general frame-
work for multicomponent growths.

Recently, Saito and Mier-Krumbhaar[6] generalized
the Eden model on a square lattice in considering the com-
petition of two different specied andB. Starting ona seed
line of antiferromagneticlike configuratioABAB. .., the
two-dimensional growth takes place by selecting randomly,
at each growth step, some particde (or B) on a cluster
surface. The A or B) selected patrticle gives an offspriing
the same speciesn a randomly chosen empty neighboring
site of the selected particle site. The macroscopic growth
takes place in a direction perpendicular to the seed line. Pe-

*Electronic address: vandewal@gw.unipc.ulg.ac.be FIG. 1. Internal structure of a cluster grown with the SMK rule
TElectronic address: ausloos@gw.unipc.ulg.ac.be (in a half space of size =64). Each color represents a species.
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FIG. 2. Log-log plot of the distributiom(h) of the domain

walls in ad=2+1 half space. Various system sizes are illustrated:

10x10, 40<40, and 6& 60. FIG. 3. Two-component cluster grown on the square lattice.

Each color represents a species. Note the conservation of the num-

B domain walls at a height scales asm(h)~h™X, with ber of domains during the growth.

x=3 for L—+ [6] such that the internal pattern of do-
mains presents power-law correlations. The internal pattern . i

is then expected to be scale invariant and the size distribution — 10 000 pa_lrtlcles have been glued: _each color represents a
of A andB domains is expected to be a simple power law. InParticle species. Contrary to the confined half space of the
so doing, the internal pattern is said to titical [6]. This SMK model, the competition does not lead asymptotically to

emergence of criticality for competing species seems to b@e growth of a single domal.n, but the number of dom‘.i'”.s
natural and universal. seems to be conserved during the cluster growth. This is

We numerically investigated the SMK model ir-2 and verified thr_ough meaSL_Jring the numbsgir) of domain wallls
3+1 dimensions. Figure 2 presents the decayn) for as a function of the dlgtanzalefrom t?e ce_ntral Iattlce_sne.
d=2+1 for seed sizes up to 6060. A power-lawdecay of Clusters of mass up to’2, 2, and 27 particles were simu-
n(h) was found for large system size, expressing the preslf"t(ad ford=2, 3, and 4, respectlvely.aWe found numerl_cally
ence of strong finite-size effects in this geometry. The expotNatn(r) scales as a power lam(r)~r. The exponent is
nent y was found to bey=0.35+0.03, close tol. For thus the counterpart of the exponept but in the radial

d=3+1, seed sizes up to 4040xX 40 have been simulated growth case. .
and the exponenty is numerically estimated to be The exponentr was found to be zero on the square lattice

x=0.22+0.06, close tal. The values of the exponegtare (d=2), as shown in Fig. 4. Moreoveg; is strictly positive
listed in Table I. in three @=1.33t0.01) and four dimensions of

Now let us consider the growth in a different geometry,=2'48t 0.04). This is also illustrated in Fig. 4. One should
i.e., on ad-dimensional hypercubic lattice starting from a note that the central segd growth m_odel gives more accurate
central site. Initially, the minimal double seed configuration€XPonent values than in the restricted growth case since
AB is considered on the central sites of the lattice. Theﬂmte—sae effects are less important in the former geometry.

growth consists in selecting at random one occupied site on
the cluster surface and in gluing a new particle of the same 10°

state on one of its empty neighboring sites. This selection- E & ' d=2 ! E
gluing process is repeated a desired number of times. The : d=3 ]
process is equivalent to the SMK model, but the geometry is 10 F d=4 EFEFFP E
now slightly different: the macroscopic growth is radial and E ad ]
the clusters are rounded. 100 L o” _=
Figure 3 presents the substructure of a cluster after~ E g " 3
= r Y ]
TABLE |. Numerical values of the critical exponentsand « 10?2 F - N as® E
estimated on variousl-dimensional hypercubic lattices. The last F “ ]
column gives an estimation of the exponenthrough the scaling - ]
relationship of Eq(3). 100 F o
o o~ 00040 e, ~
d X a (d—2)(1+x) 100
1 10 100
2 0.67+0.01 0 0 r
3 0.35-0.03 1.33:0.01 1.35:0.03
4 0.22+0.06 2.48-0.04 2.44-0.12 FIG. 4. log-log plot of the radial distribution(r) of domain

walls in, respectivelyd=2, 3, and 4.
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Because new domains cannot spontaneously nucleate on the a=(d—2)(1+y) 3
cluster surface, a positive or zero valuemineans that the
number of domains is strictly constant during the cluster
growth. However, the positive value of in three and four between both exponents and y and the space dimension-
dimensions means that the domain walls are fractal with ality d. As shown in Table I, the relationshi@) is in very
fractal dimensiord;=a+1. good agreement with the numerical estimations of both ex-
Strictly speaking, the growth of domains in this openponents. One should note thgt=0 since the number of
space geometry isoncritical since the size of growth events domains cannot increase. This imposes thatd— 2.
(i.e., domain sizesis not distributed as a power law. How- |t should be pointed out that the decay of the number of
ever, the domain walls are fractal-like objects, resulting fromdomains in the striplike geometry can be related to the sur-
the motion of the domain walls. It seems that these basi¢ace fluctuations through the dynamical exponef8]. For
two-component spreading phenomena are not universal ithe Eden growth, the surface fluctuations are governed by the
the strict physical sense and depend on the considered spak@rdar-Parisi-ZhangkPZ) equation[9]. Earlier studies in a
availability. This unexpected nonuniversality was also ob-striplike geometry[8] have shown that the numbsi(h) of
served for the roughness exponent of interfaces betweefiomains goes as
Eden cluster$7] in various confined geometries.
One can explain the effect of the geometry on the criti-
cality by describing the formation of internal structures. One N(h)~h~(d-Drz (4)
may, e.g., assimilate the growth of the diffusion of “domain-
wall particles” on the cluster surface. When two domain-
wall particles meet, they annihilate. The latter event correin d-bulk dimension. Fod=2, the number of domains at
sponds to the coalescence of two domains. For the SMHKeighth is equivalent to the number of domain wall particles
model, one can write down a generalized diffusion-n(h) such thaty=1/z. Sincez=3 for d=2 [9], this gives

annihilation equatiori6] x= 2, in agreement with our findings. Thus our findings are
consistent with the usual exponents for surface fluctuations.

d_PN_le,X (1) However, ford>2, the Eden model does not reach the

dh ' asymptotic regime of the KPZ equation for accessible length

) . i _ and time scale§10]. For d>2, we found herein that
where the density of wall particles is simply |, __q/q.

p(h)=n(h)/L. Integrating this equation, one finds easily the™ \ye conclude from these results that the geometry of a
power Iawn(h)fh"x, in agreement with numerical results two-component propagatiofround or confined in a half
for the L — + o limit. space influences the binary species critical growth behavior.
However, one should remark that for the central seedrpe criticality of two-component spreading seems to be not
case, the diffusion-annihilation equation should take into acyniversal because the geometry affects the criticality. How-
count the fact that the average interparticle distance increas%%er’ a scaling relationship is found between the exponents

with a positive variation of . Because of this surface dila- , anq 4 describing the domain-wall distributions in the dif-
tion, the decreasing rate of the density of wall partigléls  ferent geometries and the space dimensiofthis work en-

proportional tod(1/S)/dr, whereS is the cluster surface pances the interest of the study of multicomponent spreading

d=1 Thi impli ; i

S~r""*. This argument implies that phenomend5] and opens alternative perspectives. Further
dp Lt developments concern, e.g., the case of more than two kinds
9 T (2)  of particles.
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